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ABSTRACT

Urban heat islands are local areas where the temperature is much
higher than in the vicinity and are a modern phenomenon that occurs
mainly in highly developed areas, such as large cities. This effect
has a negative impact on energy management in buildings and also
has a direct impact on human health, especially for elderly people.
With the advent of volunteered geographic information from private
weather station networks, more high resolution data is now available
within cities to better analyze this effect. However, such data sets
are large and have heterogeneous characteristics requiring visual-
interactive applications to support further analysis. We use machine
learning methods to predict urban heat islands occurrences and
utilize temporal and spatio-temporal visualizations to contextualize
the emergence of urban heat islands to comprehend the influencing
causes and their effects. Subsequently, we demonstrate the analysis
capabilities of our application by presenting two use cases.

1 INTRODUCTION

The number of people moving into urban areas is constantly in-
creasing. There are many potential reasons for this, such as better
career opportunities or increased mobility. In 2014, about 54% of
the population lived in urban areas; urbanization experts predict this
number will rise to 66% by 2050 [20]. The urbanization process
and the increase of the industrial sector resulted in numerous an-
thropogenic modifications to the environment such as buildings and
streets, leading to a decrease of green spaces in urban areas [11].

This ongoing development has several negative consequences on
human health, such as raised noise exposure, heightened air pol-
lution, and increased heat stress [10]. Within cities in particular,
sources such as industrial processes, building air conditioning, and
transportation increase anthropogenic heat generation. Paving mate-
rials, such as black asphalt, generate more heat that is then trapped
by tall buildings that disrupt the air flow. These effects all contribute
to an increase in temperature in urban areas and are known as the
urban heat island (UHI) effect. The level of urbanization plays a
crucial role in the severity and frequency of urban heat islands, as
shown by the average temperature for different areas with different
levels of urbanization in Figure 1.

The urban heat island effect has social, economic, and meteoro-
logical ramifications. First, it has direct negative consequences on
human health. For example, urban heat islands can lead to dehy-
dration, heat strokes and a generally increased mortality rate due
to heat stress, especially for elderly people [10]. The likelihood
of prolonged heat stress is further exacerbated by global warming.
However, this development could be limited by reducing the quantity
and intensity of urban heat islands.
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Figure 1: Average temperature at different urbanization area levels.

To reduce the number of urban heat islands in urban areas, their oc-
currence in cities must be made analyzable to enable an understand-
ing of their underlying causes. This requires fine-grained resolution
data that can provide urban planners or meteorologists with informa-
tion on the effects of different building materials, specific building
geometry, or green spaces. However, traditional data sources usu-
ally cannot meet these requirements. Satellite data, such as from
MODIS, has a coarse spatial resolution of about 1km, as well as
a coarse temporal resolution with only two measurements per day.
National weather stations, such as those of the German Meteoro-
logical Service, are often located outside of cities and thus cannot
provide information on the development of urban heat islands in
urban areas. Volunteered geographic information (VGI) can help to
close this gap in the data. One possible source is the private weather
station network ‘“Weather Underground” [23] that provides access
to over 25,000 weather stations in Germany alone, compared to
approximately 300 stations provided by the German Meteorological
Service. Thus, data with higher spatial resolution is available, pro-
viding a better foundation for spatio-temporal temperature models.
The use of this data source also leads to new challenges, such as
data uncertainty or the handling of hundreds or thousands of data
stations, their analysis, and the visualization of relevant information.

The aim of this paper is to support domain experts, such as city
planners or meteorologists, in the detection and investigation of
urban heat islands and, by doing so, also improve their understanding
of urban heat islands. We contribute an interactive visual analytics
application that consolidates automatic predictive analysis and glyph-
based overview visualizations. We tailor existing methods to this
specific application to enable users to adjust input parameters and
visually explore spatial and temporal information while considering
the geographic context. The application is evaluated through two
different use cases, highlighting the generalizability of our approach.

The remainder of the paper is structured as follows: In Section
2, we give an overview of related work and emphasize how we
position our research. In Section 3, automatic methods for the
detection of urban heat islands are presented and, in Section 4,
we present suitable combinations of visualization and interaction
methods. Afterwards, the capabilities of our tool are demonstrated
by two use cases in Section 5. The drawbacks and benefits of our
approach and directions for future work are discussed in Section 6
with a subsequent conclusion in Section 7.



2 RELATED WORK

The related work section is inspired by three main categories of
research: (1) Automatic methods to detect and predict urban heat
islands. (2) Spatial, temporal and spatio-temporal representations
to facilitate the detection of interesting spatio-temporal patterns. (3)
Visual Analytics methods to visually explore results of an automatic
analysis for understanding causes of the emergence of UHI.

2.1 Prediction of Urban Heat Islands

There are two ways to predict urban heat islands. First, physical or
numerical simulation models can be used to formulate the behavior
of complex systems by mathematical functions and to make them cal-
culable. One example is the Urban Weather Generator from Bueno
et al. [3] which uses different models such as the vertical diffusion
model or the Urban Canopy and Building Energy Model to calculate
hourly values of urban air temperature and humidity. This model
achieved quite accurate results, with an expected error of around 1
Kelvin. Alternatively, machine learning methods can be used. For
example, Voelkel and Shandas [22] use Random Forest classification
for the prediction of urban heat islands. Such approaches were able
to make reasonable predictions of urban heat islands, while having
the advantage that the used methods are general and can be easily
transferred to other areas. Currently, a compromise must usually
be made when deciding which of the two approaches to use. Ma-
chine learning methods are usually very efficient and generalizable,
but they often suffer from the fact that they are black-box meth-
ods, which cannot provide an explanation on how the results were
achieved. This is not the case with the simulation models, since
here it can be precisely investigated how the results were calculated.
However, they suffer, for example, from a lack of generalizability,
since they are often developed for a specific scenario or parameter
range.

2.2 Spatio-Temporal Event Visualizations

Urban heat islands can be considered to be spatio-temporal event
data. Heatmaps are often used for this type of data to convey spa-
tial distribution and density [5]. Another common visualization for
spatial data are choropleth maps [9], which are similar to heatmaps,
except that they use geographic boundaries, such as states or coun-
ties to aggregate the data. Similar to heatmaps, choropleth maps also
struggle with the visualization of spatio-temporal data. Often ani-
mation is used to convey the temporal aspect of the data. However,
studies show that larger animated choropleth maps cause issues such
as change blindness and change blindness blindness [6].
Visualizing spatio-temporal data, such as weather forecasts, there
are two common visualization approaches. The first consists of
multiple coordinated views which are connected through linking &
brushing [4]: the single visualizations represent only either spatial
or temporal aspects. Users have to simultaneously read multiple
views to understand connections within the data. Unfortunately, this
approach leads to increased cognitive user load [7]. The second
common visualization approach is to enrich maps with additional in-
formation, using, for instance, with glyph-based visualizations [16].

2.3 Spatio-Temporal Event Visual Analytics

The increasing amount of available data, partly due to volunteered
geographic information, enables researchers to create prediction
models for future trends or events or to identify causes and interrela-
tions between outcomes and the input data. Incorporating the user
into this automatic analysis is one of the core concepts of Visual
Analytics [12]. Various domains benefit from incorporating domain
experts in the analysis process, including the analysis of spatio-
temporal event predictions [16]. Additionally, the spatio-temporal
events can be used as a basis to derive higher level features, such as
the movement of people [13].

2.4 Positioning

In this paper we build on the aforementioned related work and create
apredictive visual analytics application by tailoring existing methods
to the specific application of detection and the spatial and temporal
study of urban heat islands. We create a geographic information
system that uses a map-based spatial visualization in combination
with a glyph-based visualization, as this design has proven to be
effective in similar contexts in several applications [2,25]. We use the
glyph-based visualization to display the spatio-temporal distribution
of the occurrences of UHI in cities, and we enhance the glyph to
simultaneously provide information on possible local causes for
the occurrence by displaying the area amount of land use and land
cover in the surrounding. Additionally, we incorporate automatic
analysis methods that can be interactively steered and refined by
user interactions to enable the analysis of complex predictive visual
analytics scenarios. We incorporate additional abstract and temporal
data visualizations to steer the user to interesting periods of time and
to examine the impact of meteorological and topographic features
as land-use and land-cover on the prediction outcome.

3 CLASSIFICATION

The prediction of the urban heat island effect is a complex problem
that depends on a multitude of factors that are responsible for the
increased temperature phenomena occurring in urban areas. The
ongoing urbanization process leads to anthropogenic changes in the
land use, such as the replacement of vegetation and green areas by
residential and industrial areas [19], which are essential for the miti-
gation of higher temperatures [18]. According to Lo and Quattrochi
land-cover characteristics, such as the used building materials and
their properties such as degree of absorption, radiation properties,
albedo, and evaporation rates, are also influencing factors [14].

In general, we want to tackle a classification problem in this work.
Based on historical data, we want to train a classifier to ascertain the
explanatory variables for the spatio-temporal occurrence of urban
heat islands in cities to better understand their emergence. We follow
an approach that is similar to Voelkel and Shandas [22]: we combine
land use and land cover features with meteorological features and
employ machine learning algorithms for the prediction of urban heat
islands. We describe the data set that we used in detail in Section 3.1
and present an evaluation of different machine learning algorithms
and their performance in Section 3.2.

3.1 Data Foundation

For the meteorological data, such as temperature and precipitation,
we collect global and local weather data for individual cities in
Germany. The global meteorological data for a city is provided by
the German Meteorological Service (DWD). DWD data sets have
a good quality with high accuracy and low uncertainty. However,
most DWD stations are situated outside of the city area, thereby
providing no measuring points within cities where the UHI effect
occurs. To fill this gap in the data, we rely on more localized data
recorded by private weather stations. However, one must be careful
in using these data sets, as the quality of the data is not examined
thoroughly. We faced an issue with stations that are located
inside of buildings, which are characterized by providing constant
temperature values at room temperature, and stations with strongly
deviating or opposing temperature patterns. Nevertheless, even
after applying these filtering steps, cities such as Karlsruhe (about
300,000 inhabitants) contain 28 stations distributed within the city,
allowing a closer look at the emergence of urban heat islands. The
distribution of these stations is shown in Figure 2. The distribution
of the weather stations corresponds approximately to the distribution
of the built-up areas and consequently serves as an acceptable data
foundation. For example, a large area in the north of Karlsruhe is
visible in which no weather stations are present due to the forest
area in this region. Since forests are not suffering from the urban



Figure 2: Distribution of private weather stations (blue circles) and
stations from the DWD (red squares) in and around the city of
Karlsruhe. The volunteered data set provides a more fine-grained
spatial distribution: 28 stations in the city of Karlsruhe.

heat island effect the prediction of the UHI effect is not interesting.
In contrast, there are several stations in the city center which are
only a few hundred meters apart. Throughout Germany, we have
over 1800 stations located within city boundaries. These city
stations can be used to identify places and times of the emergence
of urban heat islands. A heat island is defined as a location that has
a higher temperature than its surrounding area. We calculate the
average temperature of the surrounding stations within a radius of
1 km using a bilinear interpolation strategy. Thus, closer stations
have a higher influence and more distant stations a lower influence.
Afterwards, we introduce a threshold value that determines the
amount of temperature difference (with respect to the average
temperature values of neighboring stations) needed for a specific
location to be classified as an urban heat island. Through initial
experiments, we have determined this threshold to be 1° Kelvin,
which is the minimum annual mean air temperature difference,
that a heat island is warmer than its surrounding, according to US
Environmental Protection Agency [1]. We perform this thresholding
hourly for each station over the course of the year 2016, resulting in
a binary classification dataset including ~ 16 million data points.

We enrich this large data set by meteorological information pro-
vided by the DWD, namely: Air Temperature, Soil Temperature,
Relative Humidity, Cloudiness, Precipitation, Air Pressure, Sun-
shine Duration, Wind Direction, and Wind Speed. Additionally, we
add land-use and land-cover information from OpenStreetMap. We
considered the surrounding area within the radius of 1 km around
each station to be relevant and aggregated the surface area char-
acteristics into five different categories: Water Area, Green Space,
Sand/Stone Area, Residential or Institutional Buildings, and Indus-
trial Territory. These five categories were chosen in consideration
of heat absorption and radiation characteristics of different surfaces.

3.2 Classification of Urban Heat Island Events

To identify locations where the UHI effect occurs and to enable an
analysis of the influencing causes, we train prediction models with
well-known machine learning algorithms. To compare our results
to those of Shao et al. [17] and Xi et al. [24] we compare Neural
Networks, Random Forests, Decision Trees and Naive Bayes against
each other. To decide which machine learning method is the most
appropriate for our application, we examine their performance in a

quantitative evaluation. We perform a 5-fold cross validation, i.e., we
divide our dataset into five folds and use four folds for the training
and one fold for the testing of the classifier. The results of this
evaluation are reported in Table 1. In our case, the Random Forest
classification has the best performance, with an accuracy of 82.3%
and a Cohen’s k score of .647. Thus, we decided to use Random
Forest classification for the prediction of the emergence of the UHI
effect. However, this does not mean that this evaluation contradicts
the results of Shao et al. and Xi et al. as we have used standard
parameters in our case and have not optimized the classifiers, since
this is not the main contribution of this work.

[ Classification Model [ Accuracy | Cohen’s K |
Random Forest (RF) 82.3 % .647
Decision Tree (J48) 79.2 % 584
Multilayer Perceptron (MLP) 75.9 % 519
Naive Bayes (NB) 52.7 % .055

Table 1: Classification model evaluation results sorted by accuracy.

4 SYSTEM

During our research on the subject area and in preliminary
discussions with domain experts, we have have identified three
requirements that our system must meet to support experts in
analyzing the circumstances of the emergence of urban heat islands:

V1) When do urban heat islands occur? We need suitable
visualizations that enable the experts to analyze when urban
heat islands are emerging and if there are temporal pattern,
such as correlations in the occurrence of urban heat islands.

V2) Why do urban heat islands occur? To understand why urban
heat islands emerge, we connect temporal and geo-spatial
information about the occurrence of urban heat island events.
This enables us to bring the occurrences into its context.

V3) How can we mitigate the urban heat island effect? In order
to mitigate the urban heat island effect in cities, we need to
understand what effects planned urban measures and climate
changes have on the emergence of urban heat islands. There-
fore, we have to enable the experts to play through what-if
scenarios to check whether, for example, planned structural
changes promote or reduce the emergence of heat islands.

To support the analysis of our predictions of the occurrence of
the urban heat islands and to tackle our three stated requirements,
we have developed a visual-interactive application, which is shown
in Figure 3. In particular, we are analyzing the urban heat islands in
2016 for the city of Karlsruhe in Germany. As shown in Figure 2,
we investigate 28 stations in detail. The application consists of
several components, which can be resized and rearranged by the
user, facilitating the focus on the most relevant components for a
given task. We use a calendar-view visualization to display the
distribution and intensity of urban heat islands for 2016. These
visualizations can also be used for the temporal filtering of date and
time ranges. In addition, we offer a map visualization in which we
use a combination of a radial glyph and a nightingale chart to encode
the temporal distribution of urban heat island events and additional
context information such as surface characteristics in the surrounding
of the stations on the map. Finally, we offer an intuitive input panel
that allows the user to investigate arbitrary what-if scenarios. To do
this, the user can adjust one or more variables of interest, which alter
the input for the prediction with the trained Random Forest classifier.
In the following, we describe all used components in detail.
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Figure 3: Our system consists of five components that can be flexibly resized by the user: the Feature Input Panel (a) allows to predict the
influence of 15 environmental parameters on the UHI event outcome. The colors correspond to the Nightingale glyph in (b). The Nightingale
glyph map (b) visualizes the temporal occurrence of UHI events and the surrounding spatial context of stations in Karlsruhe. The system status
panel (c) displays information feedback about the system’s state to the user. The interactive calendar view (d) depicts the number of hotspot
and their intensity for each day over an entire year. Users can select time ranges to filter the Nightingale glyphs in (b). The time selector (e)
enables users to apply an hourly-based filter to both the Nightingale glyph map (b) and the calendar view (d) using the clock metaphor.

4.1 Temporal Components perts, for example an increase or a decrease of the occurrences at the
weekends. In order to address these two requirements, we decided
to use a calendar view. Each day is represented by a date cell. This
facilitates the users to determine whether the occurrences are due
to the season, the day of the week, or some other correlation [21].
We use color to encode the number of UHI as well as their intensity,
because color allows us to better visualize the progression. This also
facilitates to quickly recognize outliers, for example, a day without
UHI in a week with many UHI. However, color as a visual channel is
less effective for encoding of actual values than, for example, length.
Therefore, we offer tooltips to display the exact values on demand.

To fulfill requirement V1, the visualization of the temporal distri-
bution of the occurrences of the urban heat islands over the year
and for the temporal filtering of the data we have implemented a
calendar view, as depicted in Figure 4 and a clock-inspired visualiza-
tion, as shown in Figure 3 (e). These components were selected to
use known metaphors such as calendars and clocks to visualize the
temporal distribution of the occurrence of the urban heat islands and
to enable the application of hourly and date range filters on the data.

On the one hand, we visualize linear time series data to enable
temporal correlation exploration: e.g., the frequency of UHI events
over a year. On the other hand, we have to be able to reveal cyclical
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- < In addition to the calendar view, we have implemented a clock-
the number of UHI (center) or the UHI intensity of each day.

based time selector. This component enables the user to filter the



represented information by the time of day, which allows for an
in-depth analysis of the occurrences of urban heat islands within
different time periods of the days. This clock-based time selector
and an example showing the selection of a time period between 7
a.m. and 6 p.m. is depicted in Figure 3 (e).

4.2 Spatio-Temporal: Nightingale Glyph

To meet requirement V2, we need to bring the temporal occurrences
of the urban heat islands into their spatial context. Hence, we have
decided to apply a radial glyph-based strategy. This strategy enables
us to visualize both the temporal distribution and further information
directly on the map, which, according to Fuchs et al. [7], requires
less cognitive user effort than linking multiple views. Additionally, a
radial glyph-visualization of the time-oriented data has proven to be
more effective for specific tasks, such as picking particular temporal
locations, as highlighted in a study by Fuchs et al. [8].

Area Segments

Time Segments

Water
Green Surface

Residential Area

Industrial Territory /

(a) Nightingale glyph: The inner group rep- (b) The outer group visualizes the
resents the geographic section of the glyph temporal progress of the UHI in-
representation. Every segment indicates the dex using a clockwise ordering. Ev-
amount of a certain area, that is located ery segment indicates the UHI in-
within a radius of 1km around a WU sta- tensity of the respective temporal
tion. To the right a colored legend describes unit (hour, day, month, date range).
the five different area types.

Here, 24 hours are displayed: one
segment per hour.

Figure 6: An explanation of the Nightingale glyph visualization.

In Figure 6, the design of our glyph-based visualization is intro-
duced. Its inner segments can be used to encode different informa-
tion. In our case, we encode the distribution of land use and land
cover features in the vicinity of a station with the help of a Nightin-
gale Rose Chart [15], where we map the fraction of the total area to
the radius. Although this introduces a bias for areas with a larger
fraction of the total area, since they are assigned a disproportionately
large area in the chart, this facilitates users to recognize the predom-
inant areas more easily. Alternatively, the inner area segments could
be altered to convey meteorological or statistical features. The outer
ring, we visualize the temporal intensity of urban heat island events
of a station in each time segment using a continuous color scale
from green to red. Green color indicates low UHI event occurrences
whereas red color indicates more UHI events in a specific time slot.
The time segments are arranged radially clockwise around the inner
visualization area and the first time segment of the selected period
starts at 12 a.m. The time segments can be chosen arbitrarily so that
users can retrieve details about the intensity of the urban heat islands
for every day hour or the months of the year.

The nightingale glyphs are positioned on the map at the geo-
graphic position of stations available in the data, allowing us to
encode additional context information on the map, as well as the
temporal distribution of the occurrence of UHI events for the re-
spective station. Also, the color scale of the time segments can also
be changed to visualize different information. We use this feature
to enable the user to inspect the outcome of a user-steered what-if
scenario. Instead of merely showing the distribution of the occur-
rence of urban heat islands after a change in the input parameters,
the user can switch to a blue-white-red color scale, which visualizes
the difference between the prediction and the original values. A

reduction in the number of urban heat island events within a period
is indicated by a blue color, an increase in red. White color indicates
no change for a specific time segment. The color tone is mapped
to the strength of the difference, with a strong increase or decrease
being mapped to a strong red or blue color. This approach was
chosen to emphasize the temporal aggregated changes of UHI events
which are illustrated in the example in Figure 7.

4.3 Feature Input Panel

To support exploration and to investigate the effects of climate or
land use changes, as stated in requirement V3, we provide a Feature
Input Panel (FIP) that is presented in Figure 8. Users can use the
FIP to interactively steer various parameters. With the help of this
graphical interface, users can generate both simple and complex
scenarios fitting their questions. For example, how could a change in
the cityscape such as an increase of the industrial sector or a climate
change resulting from global warming affect the UHI situation?

In the input panel, sliders are provided that allow the user to ma-
nipulate values for any of the 15 parameters used for the prediction
of urban heat island events. In the standard configuration, the sliders
are set to 0, which corresponds to no change in the values from the
default state. Moving the slider to the left decreases a value, while
moving it to the right increases it. The user can adjust these sliders
to interactively generate delta values that are then applied to the
measured values of the regarded time period to alter the input values
for the prediction. This can be used, for example, to increase the
temperature to simulate scenarios with warmer climate or reduced
wind speeds like large buildings in the cityscape are acting as wind
breaks. If the users change one of the land use characteristics, such
as the residential areas, the sliders of the other land use characteris-
tics are automatically adapted. For example, if the residential area
is increased by 40%, the water, green, dry and industrial selectors
are reduced by 10% each. This ensures that the area used for the
prediction always remains at 100% to simulate more realistic sit-
uations. Moreover, users can arbitrarily adjust all parameters of
interest simultaneously to generate more complex scenarios.

5 UsE CASES

In this section, we want to highlight how our system can help domain
experts in the investigation of the emergence of urban heat islands.
We show the usefulness of our trained classifier in combination
with the selected components presented in the previous section in
two use cases. The first use case is the analysis of the impact of
industrialization in urban areas and in a second use case we examine
the impact of global warming. Both use cases will be performed for
stations in the city of Karlsruhe in 2016.

5.1 Increase of Industry Area Level

To investigate the impact of increased industrialization in urban areas
on the occurrence of urban heat islands we simulate this scenario by
using the introduced Feature Input Panel, as described in Section 4.3
by increasing the delta of the industrial area to 60%. As described
earlier, this decreases the delta of the water, green, dry and residential
area by 15% each, to keep the area at 100%. After the delta values
are chosen, the prediction can be repeatedly executed to simulate a
cityscape with 60% increased industrial area. The results of both the
initial and the modified scenario are shown in Figure 7.

The cityscape in Karlsruhe, which can be explored in Figure 7a
through the nightingale chart glyphs, is dominated by much green
space. This leads to a small number of urban heat islands. However,
this can be greatly changed by the change of the spatial surface
characteristics. By increasing the industrial area by 60% and reduc-
ing the other areas by 15% each, we create the scenario depicted
in Figure 7b. A direct comparison with Figure 7a shows that this
increase of industrial areas would increase the number of urban heat
islands. The difference view that is displayed in Figure 7c¢ supports



this result and emphasizes the UHI prediction differences for each
station. The glyphs in Figure 7c are almost always consistently red,
which indicates that, compared to the standard situation, the number
of urban heat islands has risen sharply and thus shows the negative
effects of increased industrialization without compensating areas.

(a) Default occurrences of (b) UHI occurrences, after (c) Difference view show-
UHI in Karlsruhe when ap- a 60% increase of the in- ing the changes between
plying hourly aggregation. dustrial sector in the sta- the initial situation de-

picted in view (a) and
the adjusted situation dis-
played in view (b).

tions’ surrounding.

Figure 7: Effects of increased industrial area level on the occurrence
of UHI events. With the help of the difference view, users can be
observe how growth of the industrial sector leads to a considerable
increase of urban heat island events.

5.2 Warmer Climate

With the help of our Feature Input Panel, even more complex scenar-
ios can be simulated and analyzed. For example, we can explore the
effects of global warming on the severity of urban heat islands in
cities. To create such a scenario, we need to adjust meteorological
parameters in our Feature Input Panel as shown in Figure 8. The
parameter selection simulates a warmer and drier weather situation
which could be a result of global warming processes. The prediction
is then recalculated to enable analysis of the selected scenario.

The effects of this simulation can be analyzed using the calendar
view in combination with our clock-based time selector to focus on
interesting day hours. This enables us to investigate how the annual
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Figure 8: Adjusted feature parameters to simulate a warmer and
drier weather situation.

distribution of urban heat island events develops in the context of
global warming and what impact it has at various times of the day.
For example, Figure 9 shows the annual distribution of urban heat
islands before and after simulation. The calender view shows that
the number of urban heat islands is declining in summer. This
result seems counter-intuitive at first, since one expects that warmer
weather, especially in summer, will create more heat islands in
urban areas. However, the conditions are changing in such a way
that there are no more isolated urban heat islands, since it seems
that the situation is turning into a rather global heat problem. In
addition, the prediction shows a shift of the occurrences of heat
island events from summer to spring and even winter. This can be
an adverse development, as prolonged exposure to heat can lead to
health problems.
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(a) Yearly distribution of UHI and their intensity before the prediction simulation.
Number of Hotpots

UHI Hotspot Intensity

05 0.6 07 08 0.9 1.0

Aug Sep  Oct
[= 1) u

ogo
o B
[m[u]) =
nﬂ om0
= | 0

(b) Yearly distribution of UHI and their intensity after the prediction simulation.

Figure 9: Overview of the emergence of urban heat islands and their
average intensity per day for a year before and after executing a
warm weather simulation.

Figure 9a shows that the UHI hotspot intensity distribution seems
to be equally distributed in the summer months. Generally, higher
number of heat islands per day have a slight correlation with a higher
intensity. Some outliers exist in February and October with a low
number of hotspots with high intensity values. The distribution after
the prediction, depicted in Figure 9b, shows that the intensity of the
UHLI is increasing for the spring months. The intensity of UHI events
from October to December has increased drastically indicating a
unfavorable future trend if the temperature increases over the years
as a result from global warming.

We can further investigate this scenario by using our clock-based
time selector. We examine the first half of the night, from 8 p.m. to 1
a.m. and the second half of the night, from 2 a.m. to 7 a.m as shown
in Figure 10 to identify UHI event differences between day and
night hours. We can identify that the number of urban heat islands is
increasing in the second half of the night compared to the first half.
This development can be a result of lower humidity and lower wind
speeds that reduce heat dissipation in cities or that the surrounding of
hotspots is cooling down more quickly than the UHI hotspots. This
is why for example industrial areas remain warmer overnight and act
as urban heat islands. Increased temperatures at night prevent the
affected population to recover from the warm temperatures during
the day and should be considered by city planners for decision
making in urban planning.

6 DiscussIiON AND FUTURE WORK

In this section, we discuss the key topics presented in this work,
limitations of our approach, and ideas for future work.

Using the example of the city of Karlsruhe in 2016, we have
demonstrated the possibilities offered by our application in two spe-
cific use cases. On the one hand, we can support city planners in
their urban planning by showing them the impact of changes in the
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Figure 10: Comparison of UHI hotspots characteristics for the first
and second half of the night.

cityscape. On the other hand, meteorologists can use our application
to investigate the effects of different meteorological effects on the
occurrence of urban heat islands. We had an informal discussion
with a domain expert from the DWD to identify potential fields of
application of our system. For instance, the expert emphasized that
local communities would be interested in our visual application but
it is essential to revise methodical and climatological concepts to
improve the implemented model. The expert highlighted that our
application targets a relevant problem domain that will become more
severe with the progressing climate change in the future. Another
possible application would be the investigation of hotspots in the
vicinity of sensible infrastructures, such as hospitals, retirement
homes, or schools. City planners are particularly in need of climato-
logical evaluation to understand the emergence of a specific hotspot
in a city. This approach could also be applied to other domains, such
as air pollution analysis. However, this would require adapting the
underlying model and exploiting additional data sources. In this
context, one could consider the effect of meteorological factors such
as the effect of wind and precipitation on the spread of air pollutants
and to better predict the potential threat to cities and regions. How-
ever, this would require an adaptation of the existing visualization
or an alternative visualization to provide the analyst with insights
into the causes and impacts of air pollution.

Additionally, we got valuable feedback on additional influencing
variables that should be included in the prediction model of urban
heat islands, such as the morphology and physical properties of
urban surfaces and buildings, thermal properties like heat absorption,
and surface radiation.

In our application, we consider only local hotspots. In some use
cases, it is required to understand the temperature intensity of the
whole city compared to the rural surrounding of the city. Since Karl-
sruhe is mainly surrounded by further smaller cities, we considered
to analyze rather local UHI to be more promising. Nevertheless, our
system could benefit from adding functionality that enables mete-
orologists to investigate a city’s climate with the immediate rural
surrounding to identify temporal patterns of the upscaled approach.

A current limitation of our application is that it requires exten-
sive domain knowledge and that it cannot guide users’ attention
to relevant sections of the visualization to emphasize outliers or
extreme values. Additionally, we currently do not support an ex-
ploratory analysis of an ensemble of generated scenarios, but rely
on a rather confirmatory analysis of user-generated scenarios. In
addition, the difference view should be implemented in all compo-
nents. So, strong deviations from the initial situation can be detected
not only in the spatial distribution of UHI, as is currently possible,
but also in time, if the calendar view would offer such a difference
view. Further extensions we are currently working on include the
spatial and temporal extension of the application by supporting the

analysis of several cities over several years. In this case, however,
scalability issues need to be addressed, especially with respect when
transferring the visualization to other application domains such as
with a dynamic, zoom-level dependent aggregation like Seebacher et
al. [16]. Another future step is the evaluation of our current system,
as well as ideas for future work, in a formal expert study. Finally,
we plan to extend this work to enable the analysts in this domain to
better analyze and understand the context of urban heat islands in
cities, to facilitate the finding of the relevant causes, and to identify
suitable mitigation strategies.

7 CONCLUSION

The main contribution of this paper was to provide an application
that supports domain experts in analyzing the urban heat island effect
in city areas and to investigate the impact of changes in the cityscape
or the climate. To do so, we used volunteered geographic informa-
tion along with other data sources to train and evaluate a classifier to
predict the emergence of urban heat islands. We enabled the visual
analysis of these predictions using an adaptive workspace combined
with various visualizations. For the temporal analysis of the dis-
tribution of the urban heat islands, we developed a calendar-based
view and a clock-based time selector, which is used for the filtering.
Additionally, we presented a nightingale chart glyph, which pro-
vides insights into the temporal distribution of occurrences of urban
heat island events, as well as providing contextual geographic infor-
mation. By placing them at their respective positions on the map,
we integrate the temporal and geographic characteristics. We have
presented by two examples how our application can help to visually
analyze simulations of urban heat island event predictions, how dif-
ferent what-if scenarios can be investigated, and what conclusions
can users draw from the presented information.
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